Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 9(1): 14, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208327

RESUMO

Multi-omics datasets are becoming of key importance to drive discovery in fundamental research as much as generating knowledge for applied biotechnology. However, the construction of such large datasets is usually time-consuming and expensive. Automation might enable to overcome these issues by streamlining workflows from sample generation to data analysis. Here, we describe the construction of a complex workflow for the generation of high-throughput microbial multi-omics datasets. The workflow comprises a custom-built platform for automated cultivation and sampling of microbes, sample preparation protocols, analytical methods for sample analysis and automated scripts for raw data processing. We demonstrate possibilities and limitations of such workflow in generating data for three biotechnologically relevant model organisms, namely Escherichia coli, Saccharomyces cerevisiae, and Pseudomonas putida.


Assuntos
Multiômica , Fluxo de Trabalho
2.
ChemistryOpen ; 12(4): e202200266, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929157

RESUMO

The indole scaffold is a recurring structure in multiple bioactive heterocycles and natural products. Substituted indoles like the amino acid tryptophan serve as a precursor for a wide range of natural products with pharmaceutical or agrochemical applications. Inspired by the versatility of these compounds, medicinal chemists have for decades exploited indole as a core structure in the drug discovery process. With the aim of tuning the properties of lead drug candidates, regioselective halogenation of the indole scaffold is a common strategy. However, chemical halogenation is generally expensive, has a poor atom economy, lacks regioselectivity, and generates hazardous waste streams. As an alternative, in this work we engineer the industrial workhorse Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives. Functional expression of bacterial tryptophan halogenases together with a partner flavin reductase and a tryptophan decarboxylase resulted in the production of halogenated tryptophan and tryptamine with chlorine or bromine. Furthermore, by combining tryptophan halogenases, production of di-halogenated molecules was also achieved. Overall, this works paves the road for the production of new-to-nature halogenated natural products in yeast.


Assuntos
Produtos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Triptofano/metabolismo , Triptaminas/metabolismo
3.
STAR Protoc ; 4(1): 102060, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853682

RESUMO

Mass-spectrometry-based absolute protein quantification uses labeled quantification concatamer (QconCAT) as internal standards (ISs). To calculate the amount of protein(s), the ion intensity ratio between the analyte and its cognate IS is compared in each biological sample. The present protocol describes a systematic workflow to design, produce, and purify QconCATs and to quantify soluble proteins in Pseudomonas putida KT2440. Our methodology enables the quantification of detectable peptide and serves as a versatile platform to produce ISs for different biological systems.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Peptídeos/metabolismo , Proteínas , Espectrometria de Massas , Bactérias Gram-Negativas/metabolismo
4.
Metab Eng ; 74: 83-97, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36155822

RESUMO

Acetyl-coenzyme A (AcCoA) is a metabolic hub in virtually all living cells, serving as both a key precursor of essential biomass components and a metabolic sink for catabolic pathways for a large variety of substrates. Owing to this dual role, tight growth-production coupling schemes can be implemented around the AcCoA node. Building on this concept, a synthetic C2 auxotrophy was implemented in the platform bacterium Pseudomonas putida through an in silico-informed engineering approach. A growth-coupling strategy, driven by AcCoA demand, allowed for direct selection of an alternative sugar assimilation route-the phosphoketolase (PKT) shunt from bifidobacteria. Adaptive laboratory evolution forced the synthetic P. putida auxotroph to rewire its metabolic network to restore C2 prototrophy via the PKT shunt. Large-scale structural chromosome rearrangements were identified as possible mechanisms for adjusting the network-wide proteome profile, resulting in improved PKT-dependent growth phenotypes. 13C-based metabolic flux analysis revealed an even split between the native Entner-Doudoroff pathway and the synthetic PKT bypass for glucose processing, leading to enhanced carbon conservation. These results demonstrate that the P. putida metabolism can be radically rewired to incorporate a synthetic C2 metabolism, creating novel network connectivities and highlighting the importance of unconventional engineering strategies to support efficient microbial production.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Açúcares/metabolismo , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética , Glucose/genética , Glucose/metabolismo , Engenharia Metabólica
5.
Nature ; 609(7926): 341-347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045295

RESUMO

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world's supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues.


Assuntos
Antineoplásicos , Reatores Biológicos , Vias Biossintéticas , Engenharia Metabólica , Saccharomyces cerevisiae , Vimblastina , Alcaloides de Vinca , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/provisão & distribuição , Catharanthus/química , Genes Fúngicos , Genes de Plantas , Engenharia Metabólica/métodos , Fosfatos de Poli-Isoprenil , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triptofano , Vimblastina/biossíntese , Vimblastina/química , Vimblastina/provisão & distribuição , Alcaloides de Vinca/biossíntese , Alcaloides de Vinca/química , Alcaloides de Vinca/provisão & distribuição
6.
Appl Environ Microbiol ; 88(7): e0230721, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35297727

RESUMO

Cells cultured in a nutrient-limited environment can undergo adaptation, which confers improved fitness under long-term energy limitation. We have shown previously how a recombinant Saccharomyces cerevisiae strain, producing a heterologous insulin product, under glucose-limited conditions adapts over time at the average population level. Here, we investigated this adaptation at the single-cell level by application of fluorescence-activated cell sorting (FACS) and showed that the following three apparent phenotypes underlie the adaptive response observed at the bulk level: (i) cells that drastically reduced insulin production (23%), (ii) cells with reduced enzymatic capacity in central carbon metabolism (46%), and (iii) cells that exhibited pseudohyphal growth (31%). We speculate that the phenotypic heterogeneity is a result of different mechanisms to increase fitness. Cells with reduced insulin productivity have increased fitness by reducing the burden of the heterologous insulin production, and the populations with reduced enzymatic capacity of the central carbon metabolism and pseudohyphal growth have increased fitness toward the glucose-limited conditions. The results highlight the importance of considering population heterogeneity when studying adaptation and evolution. IMPORTANCE The yeast Saccharomyces cerevisiae is an attractive microbial host for industrial production and is used widely for manufacturing, e.g., pharmaceuticals. Chemostat cultivation mode is an efficient cultivation strategy for industrial production processes as it ensures a constant, well-controlled cultivation environment. Nevertheless, both the production of a heterologous product and the constant cultivation environment in the chemostat impose a selective pressure on the production organism, which may result in adaptation and loss of productivity. The exact mechanisms behind the observed adaptation and loss of performance are often unidentified. We used a recombinant S. cerevisiae strain producing heterologous insulin and investigated the adaptation occurring during chemostat growth at the single-cell level. We showed that three apparent phenotypes underlie the adaptive response observed at the bulk level in the chemostat. These findings highlight the importance of considering population heterogeneity when studying adaptation in industrial bioprocesses.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Carbono/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Metab Eng ; 67: 373-386, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343699

RESUMO

Pseudomonas putida is evolutionarily endowed with features relevant for bioproduction, especially under harsh operating conditions. The rich metabolic versatility of this species, however, comes at the price of limited formation of acetyl-coenzyme A (CoA) from sugar substrates. Since acetyl-CoA is a key metabolic precursor for a number of added-value products, in this work we deployed an in silico-guided rewiring program of central carbon metabolism for upgrading P. putida as a host for acetyl-CoA-dependent bioproduction. An updated kinetic model, integrating fluxomics and metabolomics datasets in addition to manually-curated information of enzyme mechanisms, identified targets that would lead to increased acetyl-CoA levels. Based on these predictions, a set of plasmids based on clustered regularly interspaced short palindromic repeats (CRISPR) and dead CRISPR-associated protein 9 (dCas9) was constructed to silence genes by CRISPR interference (CRISPRi). Dynamic reduction of gene expression of two key targets (gltA, encoding citrate synthase, and the essential accA gene, encoding subunit A of the acetyl-CoA carboxylase complex) mediated an 8-fold increase in the acetyl-CoA content of rewired P. putida. Poly(3-hydroxybutyrate) (PHB) was adopted as a proxy of acetyl-CoA availability, and two synthetic pathways were engineered for biopolymer accumulation. By including cell morphology as an extra target for the CRISPRi approach, fully rewired P. putida strains programmed for PHB accumulation had a 5-fold increase in PHB titers in bioreactor cultures using glucose. Thus, the strategy described herein allowed for rationally redirecting metabolic fluxes in P. putida from central metabolism towards product biosynthesis-especially relevant when deletion of essential pathways is not an option.


Assuntos
Pseudomonas putida , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Citrato (si)-Sintase/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Metabólica , Plasmídeos , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
8.
Microb Biotechnol ; 14(6): 2566-2580, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405535

RESUMO

Secreted proteins and peptides hold large potential both as therapeutics and as enzyme catalysts in biotechnology. The high stability of many secreted proteins helps maintain functional integrity in changing chemical environments and is a contributing factor to their commercial potential. Disulphide bonds constitute an important post-translational modification that stabilizes many of these proteins and thus preserves the active state under chemically stressful conditions. Despite their importance, the discovery and applications within this group of proteins and peptides are limited by the availability of synthetic biology tools and heterologous production systems that allow for efficient formation of disulphide bonds. Here, we refine the design of two DisCoTune (Disulphide bond formation in E. coli with tunable expression) plasmids that enable the formation of disulphides in the highly popular Escherichia coli T7 protein production system. We show that this new system promotes significantly higher yield and activity of an industrial protease and a conotoxin, which belongs to a group of disulphide-rich venom peptides from cone snails with strong potential as research tools and pharmacological agents.


Assuntos
Dissulfetos , Escherichia coli , Escherichia coli/genética , Peptídeos/genética , Plasmídeos/genética , Dobramento de Proteína
9.
ACS Omega ; 6(19): 12439-12458, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34056395

RESUMO

Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.

10.
ACS Synth Biol ; 10(3): 466-477, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33577304

RESUMO

Protein misfolding and aggregation are linked to neurodegenerative diseases of mammals and suboptimal protein expression within biotechnology. Tools for monitoring protein aggregates are therefore useful for studying disease-related aggregation and for improving soluble protein expression in heterologous hosts for biotechnology purposes. In this work, we developed a promoter-reporter system for aggregated protein on the basis of the yeast native response to misfolded protein. To this end, we first studied the proteome of yeast in response to the expression of folded soluble and aggregation-prone protein baits and identified genes encoding proteins related to protein folding and the response to heat stress as well as the ubiquitin-proteasome system that are over-represented in cells expressing an aggregation-prone protein. From these data, we created and validated promoter-reporter constructs and further engineered the best performing promoters by increasing the copy number of upstream activating sequences and optimization of culture conditions. Our best promoter-reporter has an output dynamic range of approximately 12-fold upon expression of the aggregation-prone protein and responded to increasing levels of aggregated protein. Finally, we demonstrate that the system can discriminate between yeast cells expressing different prion precursor proteins and select the cells expressing folded soluble protein from mixed populations. Our reporter system is thus a simple tool for diagnosing protein aggregates in living cells and should be applicable for the health and biotechnology industries.


Assuntos
Genes Reporter/genética , Agregados Proteicos , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Dobramento de Proteína
11.
PLoS Comput Biol ; 16(12): e1008498, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351794

RESUMO

Chinese hamster ovary (CHO) cell lines are widely used in industry for biological drug production. During cell culture development, considerable effort is invested to understand the factors that greatly impact cell growth, specific productivity and product qualities of the biotherapeutics. While high-throughput omics approaches have been increasingly utilized to reveal cellular mechanisms associated with cell line phenotypes and guide process optimization, comprehensive omics data analysis and management have been a challenge. Here we developed CHOmics, a web-based tool for integrative analysis of CHO cell line omics data that provides an interactive visualization of omics analysis outputs and efficient data management. CHOmics has a built-in comprehensive pipeline for RNA sequencing data processing and multi-layer statistical modules to explore relevant genes or pathways. Moreover, advanced functionalities were provided to enable users to customize their analysis and visualize the output systematically and interactively. The tool was also designed with the flexibility to accommodate other types of omics data and thereby enabling multi-omics comparison and visualization at both gene and pathway levels. Collectively, CHOmics is an integrative platform for data analysis, visualization and management with expectations to promote the broader use of omics in CHO cell research.


Assuntos
Genômica , Internet , Metabolômica , Proteômica , Animais , Células CHO , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de RNA
12.
PLoS One ; 15(8): e0237930, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841274

RESUMO

Chinese hamster ovary cells have been the workhorse for the production of recombinant proteins in mammalian cells. Since biochemical, cellular and omics studies are usually affected by the lack of suitable fractionation procedures to isolate compartments from these cells, differential and isopycnic centrifugation based techniques were characterized and developed specially for them. Enriched fractions in intact nuclei, mitochondria, peroxisomes, cis-Golgi, trans-Golgi and endoplasmic reticulum (ER) were obtained in differential centrifugation steps and subsequently separated in discontinuous sucrose gradients. Nuclei, mitochondria, cis-Golgi, peroxisomes and smooth ER fractions were obtained as defined bands in 30-60% gradients. Despite the low percentage represented by the microsomes of the total cell homogenate (1.7%), their separation in a novel sucrose gradient (10-60%) showed enough resolution and efficiency to quantitatively separate their components into enriched fractions in trans-Golgi, cis-Golgi and ER. The identity of these organelles belonging to the classical secretion pathway that came from 10-60% gradients was confirmed by proteomics. Data are available via ProteomeXchange with identifier PXD019778. Components from ER and plasma membrane were the most frequent contaminants in almost all obtained fractions. The improved sucrose gradient for microsomal samples proved being successful in obtaining enriched fractions of low abundance organelles, such as Golgi apparatus and ER components, for biochemical and molecular studies, and suitable for proteomic research, which makes it a useful tool for future studies of this and other mammalian cell lines.


Assuntos
Microssomos/metabolismo , Proteômica , Animais , Células CHO , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Centrifugação , Cricetinae , Cricetulus , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Ontologia Genética , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Microssomos/ultraestrutura , Mitocôndrias/ultraestrutura , Proteoma/metabolismo , Software , Frações Subcelulares/metabolismo
13.
Biotechnol Bioeng ; 117(12): 3835-3848, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32808670

RESUMO

Growth decoupling can be used to optimize the production of biochemicals and proteins in cell factories. Inhibition of excess biomass formation allows for carbon to be utilized efficiently for product formation instead of growth, resulting in increased product yields and titers. Here, we used CRISPR interference to increase the production of a single-domain antibody (sdAb) by inhibiting growth during production. First, we screened 21 sgRNA targets in the purine and pyrimidine biosynthesis pathways and found that the repression of 11 pathway genes led to the increased green fluorescent protein production and decreased growth. The sgRNA targets pyrF, pyrG, and cmk were selected and further used to improve the production of two versions of an expression-optimized sdAb. Proteomics analysis of the sdAb-producing pyrF, pyrG, and cmk growth decoupling strains showed significantly decreased RpoS levels and an increase of ribosome-associated proteins, indicating that the growth decoupling strains do not enter stationary phase and maintain their capacity for protein synthesis upon growth inhibition. Finally, sdAb production was scaled up to shake-flask fermentation where the product yield was improved 2.6-fold compared to the control strain with no sgRNA target sequence. An sdAb content of 14.6% was reached in the best-performing pyrG growth decoupling strain.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Engenharia Metabólica , Nucleotídeos , Anticorpos de Domínio Único/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos/biossíntese , Nucleotídeos/genética , Anticorpos de Domínio Único/genética
14.
Nat Commun ; 11(1): 1908, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313013

RESUMO

Host cell proteins (HCPs) are process-related impurities generated during biotherapeutic protein production. HCPs can be problematic if they pose a significant metabolic demand, degrade product quality, or contaminate the final product. Here, we present an effort to create a "clean" Chinese hamster ovary (CHO) cell by disrupting multiple genes to eliminate HCPs. Using a model of CHO cell protein secretion, we predict that the elimination of unnecessary HCPs could have a non-negligible impact on protein production. We analyze the HCP content of 6-protein, 11-protein, and 14-protein knockout clones. These cell lines exhibit a substantial reduction in total HCP content (40%-70%). We also observe higher productivity and improved growth characteristics in specific clones. The reduced HCP content facilitates purification of a monoclonal antibody. Thus, substantial improvements can be made in protein titer and purity through large-scale HCP deletion, providing an avenue to increased quality and affordability of high-value biopharmaceuticals.


Assuntos
Engenharia Metabólica/métodos , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos , Células CHO , Cromatografia , Cricetulus , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Rituximab , Biologia Sintética
15.
Biotechnol Bioeng ; 117(7): 2074-2088, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277712

RESUMO

Chemostat cultivation mode imposes selective pressure on the cells, which may result in slow adaptation in the physiological state over time. We applied a two-compartment scale-down chemostat system imposing feast-famine conditions to characterize the long-term (100 s of hours) response of Saccharomyces cerevisiae to fluctuating glucose availability. A wild-type strain and a recombinant strain, expressing an insulin precursor, were cultured in the scale-down system, and analyzed at the physiological and proteomic level. Phenotypes of both strains were compared with those observed in a well-mixed chemostat. Our results show that S. cerevisiae subjected to long-term chemostat conditions undergoes a global reproducible shift in its cellular state and that this transition occurs faster and is larger in magnitude for the recombinant strain including a significant decrease in the expression of the insulin product. We find that the transition can be completely avoided in the presence of fluctuations in glucose availability as the strains subjected to feast-famine conditions under otherwise constant culture conditions exhibited constant levels of the measured proteome for over 250 hr. We hypothesize possible mechanisms responsible for the observed phenotypes and suggest experiments that could be used to test these mechanisms.


Assuntos
Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultura de Células/métodos , Microbiologia Industrial/métodos , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo
16.
ACS Synth Biol ; 9(3): 494-499, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32149495

RESUMO

Tetrahydrobiopterin-dependent hydroxylation of aromatic amino acids is the first step in the biosynthesis of many neuroactive compounds in humans. A fundamental challenge in building these pathways in Escherichia coli is the provision of the non-native hydroxylase cofactor, tetrahydrobiopterin. To solve this, we designed a genetic selection that relies on the tyrosine synthesis activity of phenylalanine hydroxylase. Using adaptive laboratory evolution, we demonstrate the use of this selection to discover: (1) a minimum set of heterologous enzymes and a host folE (T198I) mutation for achieving this type of hydroxylation chemistry in whole cells, (2) functional complementation of tetrahydrobiopterin by indigenous cofactors, and (3) a tryptophan hydroxylase mutation for improving protein abundance. Thus, the goal of having functional aromatic-amino-acid hydroxylation in E. coli was achieved through directed metabolic pathway evolution.


Assuntos
Aminoácidos Aromáticos/metabolismo , Evolução Molecular Direcionada/métodos , Escherichia coli/metabolismo , Pterinas/metabolismo , 5-Hidroxitriptofano/metabolismo , /genética , Di-Hidroxifenilalanina/metabolismo , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Hidroxilação , Redes e Vias Metabólicas , Mutação , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Triptofano/metabolismo
17.
Elife ; 92020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32163032

RESUMO

Volatile isoprenoids produced by plants are emitted in vast quantities into the atmosphere, with substantial effects on global carbon cycling. Yet, the molecular mechanisms regulating the balance between volatile and non-volatile isoprenoid production remain unknown. Isoprenoids are synthesised via sequential condensation of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), with volatile isoprenoids containing fewer isopentenyl subunits. The DMAPP:IPP ratio could affect the balance between volatile and non-volatile isoprenoids, but the plastidic DMAPP:IPP ratio is generally believed to be similar across different species. Here we demonstrate that the ratio of DMAPP:IPP produced by hydroxymethylbutenyl diphosphate reductase (HDR/IspH), the final step of the plastidic isoprenoid production pathway, is not fixed. Instead, this ratio varies greatly across HDRs from phylogenetically distinct plants, correlating with isoprenoid production patterns. Our findings suggest that adaptation of HDR plays a previously unrecognised role in determining in vivo carbon availability for isoprenoid emissions, directly shaping global biosphere-atmosphere interactions.


Assuntos
Oxirredutases/metabolismo , Plantas/metabolismo , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Aclimatação , Técnicas de Silenciamento de Genes , Redes e Vias Metabólicas , Metabolômica/métodos , Oxirredutases/genética , Filogenia , Plantas/classificação , Plantas/genética , Proteômica/métodos
18.
Metab Eng ; 56: 120-129, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526854

RESUMO

Chinese hamster ovary (CHO) cells are the preferred host for producing biopharmaceuticals. Amino acids are biologically important precursors for CHO metabolism; they serve as building blocks for proteogenesis, including synthesis of biomass and recombinant proteins, and are utilized for growth and cellular maintenance. In this work, we studied the physiological impact of disrupting a range of amino acid catabolic pathways in CHO cells. We aimed to reduce secretion of growth inhibiting metabolic by-products derived from amino acid catabolism including lactate and ammonium. To achieve this, we engineered nine genes in seven different amino acid catabolic pathways using the CRISPR-Cas9 genome editing system. For identification of target genes, we used a metabolic network reconstruction of amino acid catabolism to follow transcriptional changes in response to antibody production, which revealed candidate genes for disruption. We found that disruption of single amino acid catabolic genes reduced specific lactate and ammonium secretion while specific growth rate and integral of viable cell density were increased in many cases. Of particular interest were Hpd and Gad2 disruptions, which show unchanged AA uptake rates, while having growth rates increased up to 19%, and integral of viable cell density as much as 50% higher, and up to 26% decrease in specific ammonium production and to a lesser extent (up to 22%) decrease in lactate production. This study demonstrates the broad potential of engineering amino acid catabolism in CHO cells to achieve improved phenotypes for bioprocessing.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Reprogramação Celular , Edição de Genes , Redes e Vias Metabólicas/genética , Animais , Células CHO , Cricetulus
19.
ACS Synth Biol ; 8(10): 2347-2358, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31550142

RESUMO

Turning a proof-of-concept synthetic biology design into a robust, high performing cell factory is a major time and money consuming task, which severely limits the growth of the white biotechnology sector. Here, we extend the use of tunable antibiotic resistance markers for synthetic evolution (TARSyn), a workflow for screening translation initiation region (TIR) libraries with antibiotic selection, to generic pathway engineering, and transform a proof-of-concept synbio design into a process that performs at industrially relevant levels. Using a combination of rational design and adaptive evolution, we recently engineered a high-performing bacterial strain for production of the important building block biochemical l-serine, based on two high-copy pET vectors facilitating expression of the serine biosynthetic genes serA, serC, and serB from three independent transcriptional units. Here, we prepare the bacterial strain for industrial scale up by transferring and reconfiguring the three genes into an operon encoded on a single low-copy plasmid. Not surprisingly, this initially reduces production titers considerably. We use TARSyn to screen both experimental and computational optimization designs resulting in high-performing synthetic serine operons and reach industrially relevant production levels of 50 g/L in fed-batch fermentations, the highest reported so far for serine production.


Assuntos
Biossíntese de Proteínas/genética , Serina/genética , Serina/metabolismo , Antibacterianos/metabolismo , Bactérias/genética , Biotecnologia/métodos , Fermentação/genética , Engenharia Metabólica/métodos , Plasmídeos/genética , Transcrição Gênica/genética
20.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307490

RESUMO

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Assuntos
Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Evolução Molecular , Fenótipo , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Fibrose Cística/complicações , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Seleção Genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...